
Combining CSG modeling with soft blending using

Lipschitz-based implicit surfaces

Daniel Dekkers, Kees van Overveld, Rob Golsteijn

October 29, 1996

Abstract

In this paper a general method is given for combining CSG modeling with soft blending

using implicit surfaces. A class of various blending functions sharing some desirable properties

like di�erentiability and intuitive blend control are given. The functions de�ning the CSG

objects satisfy the Lipschitz condition which gives the possibility of fast root-�nding, but can

also prove useful in the �eld of collision detection and adaptive triangulation.

Introduction

Methods for de�ning smooth surfaces can be divided into two categories:

� Parametric functions

Parametric functions are functions of the form f(u; v) = (fx(u; v); fy(u; v); fz(u; v)). Typical

examples are Bezier or B-spline patches (See [B�ohm84] for an overview). The surface is

de�ned by control points and the surface can be adjusted by moving the control points. The

surface can be rendered by evaluating the function for di�erent well-chosen values of u and

v.

� Implicit functions

Implicit functions have the form f(p) = k and split space into two half spaces. One for

which f(p) � k and one for which f(p) < k. The points for which f(p) = k are called

iso-surfaces (for value k). We introduce the term zero-surface for the collection of points for

which f(p) = 0.

An example showing a parametric function and an implicit function de�ning the same object (a

sphere with center m and radius r) is given by Bloomenthal [Bloo88]:

Parametric:

f(�; �) = (mx + rsin(�)cos(�); my + rsin(�)sin(�); mz + rcos(�));

� 2 [0; �]; � 2 [0; 2�)

Implicit:

f(p) = r � jjp�mjj = r �
p
(px �mx)2 + (py �my)2 + (pz �mz)2

where f(p) = 0 de�nes the iso-surface (i.e. k = 0)

Parametric functions have been studied in great detail, until recently implicit functions have re-

ceived less attention.

The blending functions proposed in this paper are inspired by the blobby objects (or soft objects)

introduced by Wyvill and McPheeters (see [Wyvill90] for an overview). Blobby objects originated

from molecule models: implicit functions were used to visualize electron clouds [Blin82]. Wyvill

and McPheeters use the analogy of spatial temperature distributions: if one moves away from a

1

2

heat source, the temperature drops. In [Wyvill90], this decline in temperature is represented by a

function:

f(p) = 1�
jjp�mjj2

maxdist2

It has a maximum value of 1 at the heat source m and a minimum value 0 at a threshold distance

maxdist (points for which jjp�mjj > maxdist have value 0 as well). Di�erent heat sources can be

combined into one temperature distribution by adding the individual functions f1(p), f2(p), etc.

By introducing an iso-surface value k between 0 and 1, a surface is obtained representing points

with the same temperature value. When the heat sources are far apart, this surface will consist

of separate spheres. When two heat sources move closer together, the two spheres will gradually

blend together resulting in one single sphere when m1 = m2 (�gure 1).

m2

m1

m1

m1, m2

m1

m2

m2

Figure 1: Blobby spheres.

The functions introduced in this paper do not follow the heat source analogy. Instead of adding

and subtracting potential values to form the compound object, we focus on the CSG combination

methods resulting in a combination method which is based on maximum and minimum operators.

A second important di�erence with blobby objects is the interpretation of the function value. For

blobby objects this interpretation concerns `heat', in our method we interpret the function value

as `distance'. This notion of distance gives valuable information about the position of the surface

while evaluating di�erent points. As a consequence, the term `potential' is misplaced, but will still

be used due to historical reasons.

By introducing the blending functions presented in this paper we aim to �ll a gap between work

done by A. Pasco and J. Hart. Hart has convincingly shown that the Lipschitz property is

very desirable for e�cient sampling of iso-surfaces [Hart93]. Pasco introduced R-functions as a

framework for creating objects from subobjects using CSG based operations [Pasko95]. Although

R-functions show great `expressive power', the exact form of the functions is not argumented and

seems to be based on aestheticly pleasing results. Furthermore, the R-functions do not possess

the Lipschitz property.

1 PRIMITIVE AND COMPOUND OBJECTS 3

1 Primitive and compound objects

In this paper, we propose the construction of compound objects such that both the Lipschitz

property and a large expressive power are obtained. For a primitive object, the potential in a

point p denotes the signed minimal distance to the primitive object. For compound objects, this

exact distance interpretation cannot be held (unfortunately) due to the in
uence of soft blending.

But even for compound objects, the potential will still give distance information: if the potential

in a point p with respect to a compound object is equal to pot then the distance from p to the

compound object will be at least jpotj, and not very much larger than jpotj.

In this section, we introduce the primitive functions that we will be using: these will be skeletal

objects. The techniques used to apply the standard CSG operations to the primitive objects will

be discussed, followed by a generalization of the standard CSG operations, allowing soft blending.

1.1 Primitive objects: skeletals

The primitive objects are the `building blocks' used for creating the compound objects. A

large number of commonly used geometrical shapes can be de�ned by so called `skeletal objects'

[Wyvill86a, Bloo88]. These objects can be interpreted as a sweep of a sphere along a prede�ned

`skeletal shape'. For the variant used in this paper, the function value f(p) denotes the minimal

distance from p to the objects surface. From now on, we will always assume the zero-surface to

be the objects boundary. Following the convention in recent implicit surface literature, the sign

of f(p) is negative when p is outside the object and positive when p is inside the object. A sphere

is de�ned by a point and a radius, a rounded cylinder by two points and a radius, a torus by a

circle and a radius, etc. More complex basic shapes like splines or Bezier-patches can be de�ned

similarly.

� The implicit object sphere from the introduction is an example of a skeletal object. It

represents a sphere with center point m and radius r (see �gure 2):

f(p) = r � jjp�mjj

p

f(p)

r
m

Figure 2: Skeletal object: sphere.

� A second example is the rounded cylinder. Calculation of the potential value f(p) is done

in two steps. First, point p0 is calculated by projecting p on the line segment (m1;m2) (see

�gure 3). After this step, the function describing the sphere from the �rst example can be

used (with center point p0 and radius r).

1.2 Compound objects: combining CSG with soft blending

Following Ricci [Ricc73], minimum and maximum operations can be used to construct functions

that perform the standard CSG set operations union, intersection and di�erence. A new class of

objects is formed whose members are called compound objects.

If f1 en f2 are implicit functions representing two objects we can de�ne the operators union,

intersection and di�erence by:

1 PRIMITIVE AND COMPOUND OBJECTS 4

m1 m1m2 m2, p’

r

f(p)

f(p)

p’

r

p

p

Figure 3: Skeletal object: rounded cylinder.

union: f[(f1; f2) := max(f1; f2)

intersection: f\(f1; f2) := min(f1; f2)

Note that f\(f1; f2) = �f[(�f1;�f2). The di�erence operator can be expressed in terms of a

negation and an intersection:

di�erence: f�(f1; f2) := f\(f1;�f2)

= min(f1;�f2)

Figure 4 shows an example of the union, intersection and di�erence operator aplied to two spheres.

The �gures on the left show the potential as a function of position along a ray through the centers

of two spheres. The �gures on the right show a top view of the resulting compound objects.

f

Intersection

Difference

Union

f

f

Figure 4: Set operations (standard).

The standard set operations give sharp edges at the intersection curves of primitive objects. One

goal is to soften these intersection curves by adding and substracting `material' at these points.

In geometric modeling, this proces is known as blending. We do so by introducing a function fb
which represents the amount of blend added or substracted. For the union and the intersection

operation, fb depends on the di�erence in potential between the two subobjects. The second para-

meter, n, is a user-adjustable non-negative real and directly represents the amount of blending;

n = 0 will correspond to the absence of blending.

The de�nitions of the generalized set operators are:

1 PRIMITIVE AND COMPOUND OBJECTS 5

gen. union: f�[(f1; f2) := max(f1; f2) + fb(jf1 � f2j; n)

gen. intersection: f�\(f1; f2) := �f�[(�f1;�f2)

= �max(�f1;�f2)� fb(j � f1 + f2j; n)

= min(f1; f2)� fb(jf1 � f2j; n)

Again, the di�erence is expressed in a negation and an intersection:

gen. di�erence: f�= (f1; f2) := f�\(f1;�f2)

= min(f1;�f2)� fb(j � f2 � f1j; n)

To simplify discussion and to guide intuition about the desired properties of the generalized set

operations, we will �rst give a qualitive sketch of a possible blending function (�gure 5) and the

results of the generalized set operators (�gure 6).

x

bf (x,n)

Figure 5: The function fb.

Union

Intersection

Difference

f

f

f

Figure 6: Set operations (generalized).

In the sequel, we use fi (e.g. f1, f2) to denote subobjects that are combined with one of the

generalized set operators into a compound function f .

2 PROPERTIES OF THE COMPOUND OBJECTS 6

2 Properties of the compound objects

In this section, four important properties of the blending functions will be summarized. Namely

the Lipschitz condition, di�erentiability, locality and intuitive blend control.

2.1 The Lipschitz condition

One of the main disadvantages of implicit surface rendering is the fact that points on the iso-

surface can not be generated directly (as with parametric functions). Finding the exact position

of the iso-surface often works via sampling, involving numerous function evaluations. A single

function evaluation will only give local information, that is: a classi�cation of the point as being

an interior, exterior or boundary point.

Lipschitz-based implicit functions are functions where the rate of growth or decline of the function

value is bounded. For three dimensional functions, the formal de�nition is given by:

8p; q 2 R3 : jf(p)� f(q)j � �jjp� qjj; where � is a parameter characterizing f

The fact that the Lipschitz condition is usefull can be seen from the following observation: An

evaluation of a function in point p will result in a potential value f(p), giving local information

about the position of p with respect to the object de�ned by f . But due to Lipschitz, statements

about the environment of p can be made as well. If f(p) is negative, all points q that are closer to

p than jf(p)j=� will be negative as well. This implies that the sphere with radius jf(p)j=� around

p is guarenteed to be `empty' (that is: the zero-surface does not intersect with this sphere).

For the functions presented in this paper, the aim will be Lipschitz for � = 1 1. As proven in

appendix A, a su�cient condition for fb is:

�1 � f 0b(x; n) � 0; for all x � 0; n � 0

When a Lipschitz property holds, we can apply Sphere Tracing [Hart93]. Sphere Tracing is a

technique for �nding the �rst intersection point between a ray and an implicit surface. Lipschitz

gives a reliable method for �nding the �rst intersection point. When moving allong a ray, we can

take a step of magnitude jf(p)j without risking a `boundary cross' (see �gure 7). If an intersection

point exists, it will be better approximated with every jump. If it does not exist the points will

move to in�nity without ever reaching a potential close to zero. Special care must be taken to

prevent this from happening.

p’’
p’

p

f p p’’p’

Figure 7: Sphere Tracing.

1Other values for � are atainable straightforwardly; however, the value 1 allows the interpretation of potential-

values as bieing distances.

2 PROPERTIES OF THE COMPOUND OBJECTS 7

These observations give rise to the following algorithm:

function Intersect(e: Vector, V: Vector): Vector;

f pre: jjVjj=1, V is the direction of the ray and e is the starting point g

j[var p: Vector;

pot, �: Real;

�:=0;

pot:=f(e+�V);

do (pot< �� ^ � <outofscene) !

�:=�+jpotj;

pot:=f(e+�V)

od ;

if � <outofscene ! return e+�V

[] � �outofscene ! return `non-existent'

�

]j

2.2 Di�erentiability

For lighting calculations, among other things, it is necessary to compute the surface normal in

arbitrary points on the zero-surface. The surface normal equals the normalized negated gradient

vector in a speci�c point. It follows that the gradient vector should be computable for points on

the objects boundary. We might be tempted to think, that for primitive objects, it is su�cient

to be able to calculate the gradient vectors solely on the zero-surface. There are two reasons

why this is not the case. When combining primitive objects, the zero-surface of the compound

object will deviate from the zero-surfaces of the subobjects. When p is a point on the compound

object's zero-surface, the gradient rf(p) will depend on the gradient vectors rf1(p) and rf2(p).

In general, p will not lie on the zero-surfaces of f1 or f2. A second reason is given by the fact that

in general reliable information about the position of the zero-surface does not exist, and function

evaluations in di�erent points are used to approximate it. The gradient vectors in interior and

exterior regions can (in combination with the potential value) be a valuable aid in �nding the

zero-surface.

The de�ning functions of the primitive objects must be chosen in such a way that they are in all

points (except unavoidable critical points) di�erentiable. As an example, we look at the sphere

again de�ned by the function:

f(p) = r � jjp�mjj

The gradient vector is given by

rf = h
@f
@x
; @f
@y
; @f
@z
i =

1

jjp�mjj
hmx � px;my � py;mz � pzi

As can be seen from the formula mentioned above, the gradient vector rf(m) is unde�ned. In

general this is the case for all points on the underlying skeleton of a skeletal object.

We propose to set rf = h0; 0; 0i in these critical points, as the direction of the nul-vector is un-

de�ned as well. Moreover, this choice gives correct results in con�gurations like the one in �gure

8. Here, m2 is a critical point of f2, while the nearby point p is regular. When we compute

the gradient of the intersection of the two primitives (using the formulas given at the end of this

section) we �nd that in both m2 and p, the correct gradients are found.

The normal vector �rf=jjrf jj on any compound object can be found analytically during evalu-

ation of the function. The gradient can be written as a function of the partial derivatives of the

composing subobjects.

2 PROPERTIES OF THE COMPOUND OBJECTS 8

m2
p

f1 f2

Figure 8: critical points on the zero-surface.

� Union, f = f�[(f1; f2)

rf = rf1 + f 0b(f1 � f2; n)(rf1 �rf2) if f1 � f2
rf = rf2 + f 0b(f2 � f1; n)(rf2 �rf1) if f1 � f2

� Intersection, f = f�\(f1; f2)

rf = rf2 � f 0b(f1 � f2; n)(rf1 �rf2) if f1 � f2
rf = rf1 � f 0b(f2 � f1; n)(rf2 �rf1) if f1 � f2

� Di�erence, f = f�= (f1; f2)

rf = �rf2 � f 0b(f1 + f2; n)(rf1 +rf2) if f1 � �f2
rf = rf1 � f 0b(�f1 � f2; n)(�rf1 �rf2) if f1 � �f2

When adding the blendfunction fb to the standard CSG operations we must �rst note that com-

pound objects combined with the standard CSG operations will, in general, produce discontinuities

in the �rst derivatives on all the intersection curves of the subobjects (i.e. in all points p where

f1(p) = f2(p)). The main goal of blending is to soften these intersection lines, that is: to remove

these discontinuities. When the generalized set operations are used, di�erentiability is guaranteed

in points p where f1(p) = f2(p) if:

f 0b(0; n) = �
1

2
; for all n � 0

(The proof is given in appendix B)

Note the fact that since �1 � f 0b � 0, the gradient vector on the composite object forms a

convex combination with respect to the gradient vectors of the two subobjects. For the union and

intersection operator, it is a convex combination of rf1 and rf2, while for the di�erence operator,

it is a convex combination of rf1 and �rf2. As a result, the gradient vector on any compound

object is bounded by the convex hull, spanned by the (sometimes negated) gradient vectors on all

the primitive objects.

2.3 Locality

It is desirable to have a limited domain of in
uence for each primitive object. Objects that are

far apart should not have any in
uence on each other. As a consequence, optimalisations in the

evaluation of compound functions are possible, decreasing potential and gradient evaluation time.

Locality is obtained when fb equals 0 after some threshold potential di�erence k. The function fb
should be C1 continuous in k, to obtain a smooth connection of blended and non-blended surface

regions.

2 PROPERTIES OF THE COMPOUND OBJECTS 9

2.4 Intuitive blend control

The parameter n gives control to the user concerning the amount of blend used in a combination

step. A larger value of n should result in more added material when the union operator is used

and in more subtracted material when the intersection or di�erence operator is used. Formally,

the following should hold:

n > m) fb(x; n) > fb(x;m)

For n = 0, no blend should be added or subtracted, resulting in functions describing the standard

CSG operations where fb(x; 0) = 0 for all x. This function con
icts with the di�erentiability

constraint stating fb(0; n) = �1=2 as it should, since standard CSG is not di�erentiable. The

standard CSG operations can be approximated by the di�erentiable generalized CSG operations

by using an arbitrarily small value for n.

2.5 Some examples of blending functions

We will give six examples of di�erent blending functions. Only three of them satisfy all of the

above mentioned constraints. The others are given to provide some understanding on the e�ects

of di�erent types of blending functions. The �rst two functions give aesthetically pleasing results,

but are non-local. The second is prefered to the �rst, since the square root can be calculated in

advance. The third function shows the e�ect of `over-blending'. The fourth and �fth function pro-

duce nice, clean blends. The last function demonstrates the e�ect of a non-di�erentiable blending

function.

Function Di�erentiability Lipschitz Locality Intuitive

blend control

1 � � �

2 � � �

3 � � � �

4 � � � �

5 � � � �

6 � � �

1. fb(x; n) =
p
x2+n�x

2

2. fb(x; n) =
n

x+
p
2n

3. fb(x; n) =

�
n cos(�

6
+ x

n
) + n for x < 5�n

6

0 for x � 5�n
6

4. fb(x; n) =

�
n cos(5�

6
+ x

n
) + n for x < �n

6

0 for x � �n
6

5. fb(x; n) =

�
n
�
x
n
� 1

4

�2
for x < n

4

0 for x � n
4

6. fb(x; n) =

�
�

1

2
x+ n for x < 2n

0 for x � 2n

2 PROPERTIES OF THE COMPOUND OBJECTS 10

Function 1 Function 2

Function 3 Function 4

Function 5 Function 6

3 CONCLUSIONS 11

3 Conclusions

In this paper we have constructed a framework to describe a large class of complex objects using

implicit functions. The combination method to form compound objects from primitive ones is

based on CSG operations. The CSG operations have proven to o�er a good modeling tool in

practice. A generalization of the standard CSG operations was given, allowing variable amounts

of blending. Four desirable properties were described and carefully translated into constraints on

the generalized CSG operations. With these functions, CSG objects with controllable blending

can be obtained where we can bene�t from the Lipschitz condition to allow rapid sampling.

Acknowledgements

The authors wish to thank Dick Groot and Jan Bruijns for their important contributions to

this work. The authors would further like to thank Jan Bruijns, Miriam Egas, Walter Lewin, and

Patrick Meyers for their valuable comments after having read draft versions of this work in various

states of completion.

References

[Blin82] Blinn, J., A generalization of algebraic surface drawing, ACM Trans. Graph., Vol. 1, pp.

234, 1982

[Bloo88] Bloomenthal, J., Techniques for implicit modeling, Xerox PARC technical report P89-

00106 (November 1988)

[B�ohm84] B�ohm, W. et al., A survey of curve and surface methods in CAGD, Computer Aided

Geometric Design, vol. 1, No. 1, 1984, pp. 1-60.

[Hart93] Hart, J., Sphere Tracing: A Geometric Method for the Antialiased Ray Tracing of Impli-

cit Surfaces. To appear: The Visual Computer. An earlier version appeared in the SIGGRAPH

'93 course notes as WSU Technical Report EECS-93-015

[Pasko95] Pasko, A., Adzhiev V., Sourin A., Savchenko V., Function representation in geometric

modeling: concepts, implementation and applications, The Visual Computer, vol. 11, No. 8,

1995, pp. 429-446.

[Ricc73] Ricci, A., Constructive geometry for computer graphics, Comput. J. (GB), Vol. 16, pp.

157-160, 1973.

[Wyvill86a] Wyvill, B., McPheeters, C., and Wyvill, B., Data Structure for Soft Objects, Visual

Computer, 2, 4 (August 1986a), pp. 227-234

[Wyvill90] Wyvill, B., A Computer Animation Tutorial, Springer-Verlag, New York 1990

A LIPSCHITZ 12

A Lipschitz

The proof obligation is:

8p; q 2 R3 : jf(p)� f(q)j � jjp� qjj

We will prove this by induction on the structure of the tree de�ning the compound object.

To make the formulas manageable we apply the following abbreviations:

f1(p) = a

f1(q) = b

f2(p) = c

f2(q) = d

jjp� qjj= l

The induction hypothesis is:

8p; q 2 R3 : jf1(p)� f1(q)j � jjp� qjj

8p; q 2 R3 : jf2(p)� f2(q)j � jjp� qjj

Using the abbreviations:

ja� bj � l

jc� dj � l

This directly implies:

jmax(a; c)�max(b; d)j � l (1)

jmin(a; c)�min(b; d)j � l (2)

We will show that the following rules (which are implied by �1 � f 0b � 0) are su�cient for

Lipschitz:

x � y � fb(x; n) � fb(y; n) (3)

x � y � fb(x; n) � fb(y; n) � (x � y) (4)

For the base step of the induction we note that the skeletal primitives are de�ned in terms of an

exact (signed) distance property: f(p) denotes the minimal distance from p to the zero-surface of

f . This directly implies that Lipschitz holds for these skeletal elements.

For the induction step we di�erentiate between the three possible combination functions: union,

intersection and di�erence.

Union

jf(p)� f(q)j � l

� f f = f�[(f1; f2) g

j [max(a; c) + fb(ja� cj; n)]� [max(b; d) + fb(jb� dj; n)] j � l

�

�l � max(a; c)�max(b; d) + fb(ja� cj; n)� fb(jb� dj; n) � l

� Consider the upper bound:

A LIPSCHITZ 13

max(a; c)�max(b; d) + fb(ja� cj; n)� fb(jb� dj; n) � l

(f � Case 1: Assume ja� cj � jb� dj, from (3) follows:

fb(ja� cj; n) � fb(jb� dj; n)

g

max(a; c)�max(b; d) � l

(f From (1) g

Induction hypothesis

(f � Case 2: Assume ja� cj < jb� dj, from (4) follows:

fb(ja� cj; n)� fb(jb� dj; n) � jb� dj � ja� cj

g

max(a; c)�max(b; d) + jb� dj � ja� cj � l

�

min(a; c)�min(b; d) � l

(f From (2) g

Induction hypothesis

� Consider the lower bound:

�l � max(a; c)�max(b; d) + fb(ja� cj; n)� fb(jb� dj; n)

(f � Case 1: Assume ja� cj � jb� dj, from (4) follows:

fb(ja� cj; n)� fb(jb� dj; n) � jb� dj � ja� cj g

�l � max(a; c)�max(b; d) + jb� dj � ja� cj

�

�l � min(a; c)�min(b; d)

(f From (2) g

Induction hypothesis

(f � Case 2: Assume ja� cj < jb� dj, from (3) follows:

fb(ja� cj; n) > fb(jb� dj; n) g

�l � max(a; c)�max(b; d)

(f From (1) g

Induction hypothesis

Intersection

The intersection operator is de�ned in terms of negation and union operations (see

�gure 9): f�\(f1; f2) = �f�[(�f1;�f2)

f f1 2

2f f1

Figure 9: Intersection expressed in union and negation operations.

Since we have proven that the union operator does not violate the Lipschitz condition,

it is su�cient to show that negation preserves Lipschitz as well.

jf(p)� f(q)j � l

� �l � f(p)� f(q) � l

� l � �(f(p)� f(q)) � �l

� j � f(p) + f(q)j � l

B DIFFERENTIABILITY 14

Di�erence

The di�erence operator does not violate the Lipschitz condition since it is de�ned

as the composition of a negation and an intersection operator (see �gure 10):

f�= (f1; f2) = f�\(f1;�f2).

1f

2f

f f21

Figure 10: Di�erence expressed in intersection and negation operations.

B Di�erentiability

From the de�nition of the gradient vectors for union and intersection objects (see section 2.2), it is

clear that the gradient is continuous if and only if the gradient for f1 � f2 is equal to the gradient

for f1 � f2 in points p where f1(p) = f2(p).

Union

rf1(p) + f 0b(f1(p)� f2(p); n)[rf1(p)�rf2(p)] =

rf2(p) + f 0b(f2(p)� f1(p); n)[rf2(p)�rf1(p)]

� f Calculus, f1(p) = f2(p) g

2f 0b(0; n)rf1(p)� 2f 0b(0; n)rf2(p) = rf2(p)�rf1(p)

� f Calculus g

2f 0b(0; n)(rf1(p)�rf2(p)) = rf2(p)�rf1(p)

� f Calculus g

2f 0b(0; n) = �1

� f Calculus g

f 0b(0; n) = �
1

2

Similar proofs can be given for the intersection and di�erence operator. Note that for the di�erence

operators, points p where f1(p) = �f2(p) must be considered.

C The resulting potential evaluation function

The compound object is stored in a binary tree. The leaves contain the primitive objects, the

nodes contain a set operator and a blending factor. A non-zero blending factor de�nes a soft set

operator, a zero blending factor de�nes a hard set operator. The function EvalF ield returns the

potential with respect to a primitive or compound object at a given point p. As a side-e�ect, the

gradient vector in p is calculated and returned in r.

function EvalField(node: TreeType; p: Vector; var r: Vector): Real

j[var potl, potr: Real;

rl, rr: Vector;

if node.objtype=primitive !

pot := `the signed minimal distance from p to the primitive object';

r := `the gradient vector in p (h0; 0; 0i for a stationary point).'

[] node.objtype=compound !

C THE RESULTING POTENTIAL EVALUATION FUNCTION 15

potl := EvalField(node.lefttree, p, rl);

potr := EvalField(node.righttree, p, rr);

if node.op=union !

if potl > potr !

pot := potl + fb(potl � potr, node.blend);

r := rl + f'b(potl � potr, node.blend)(rl �rr);

[] potl � potr !

pot := potr + fb(potr � potl, node.blend);

r := rr + f'b(potr � potl, node.blend)(rr �rl)

�

[] node.op=intersection !

if potl > potr !

pot := potr � fb(potl � potr, node.blend);

r := rr � f'b(potl � potr, node.blend)(rl �rr);

[] potl � potr !

pot := potl � fb(potr � potl, node.blend);

r := rl � f'b(potr � potl, node.blend)(rr �rl)

�

[] node.op=di�erence !

if potl > �potr !

pot := �potr � fb(potl + potr, node.blend);

r := �rr � f'b(potl +potr, node.blend)(rl +rr);

[] potl � �potr !

pot := potl � fb(�potl � potr, node.blend);

r := rl � f'b(�potl � potr, node.blend)(�rl �rr)

�

�

�

]j

